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Providing bioinformatics support for all 

researchers and students in Melbourne’s 
biomedical and biosciences precinct. 
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Capabilities
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Training
Access our suite of self-directed tutorials or attend our hands-on 

training workshops (free for UoM & Affiliates researchers and 

students)

Free expert advice (for UoM & Affiliates)
Consult with some of our 30 bioinformaticians and high-end 

computing experts about grants, research design, data 
analysis/management, software and hardware

Subscriptions
Form a deep collaboration with our world-leading academic staff who 

can rapidly progress your research project and contribute to 
publications, usually via a subscription.



https://www.melbournebioinformatics.org.au/tutorials/

Online training repository



@MelBioInf   

 www.melbournebioinformatics.org.au

sign up for eNews

bioinformatics-training@unimelb.edu.au

@MelBioInf  |  www.melbournebioinformatics.org.au

http://www.melbournebioinformatics.org.au/


scRNA-seq Integration and 
Differential Expression 

Workshop
Working with treatment versus control data
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Manveer Chauhan



Study Design

• Peripheral Mononuclear Blood Cells (PBMCs) were sequenced 
using scRNA-seq from 8 lupus patients. Patients were randomly 
split into a treatment and control group. The treatment group 
received interferon beta.

• Goals of our analysis:
• Integrate data, so that batch effects are removed and 

similar cell types across both conditions are grouped 
together.

• Identify upregulated genes in cell-types in a treatment 
versus control experiment.

• Identify and visualise genes that are differentially 
expressed between conditions in a particular cell type

• Perform differential expression analysis using an 
alternative ‘pseudobulk’ approach
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Learning Outcomes
• Understand and get comfortable using various integration strategies

• Understand all differential expression functions offered by Seurat and 
when to use them

• Learn how to use differential expression tools meant for bulk data (e.g. 
DESeq2) on ‘pseudobulk’ data, and understand why you might choose 
this approach

• Learn different ways to visualize differentially expressed genes using 
both in-built Seurat functions and external packages (pheatmap)
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Software and Package Requirements

• R (v4.3.0)
• RStudio

R packages:
• Seurat (v5.0.1)
• DESeq2 (v1.42.1)
• tidyverse (v2.0.0)
• SeuratData (v0.2.2.9001)
• pheatmap (v1.0.12)
• grid (v4.0.3)
• metap (v1.11)
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General scRNA-seq Workflow

Normalise and Scale Data

Mary Piper, Meeta Mistry, Jihe Liu, William 
Gammerdinger, & Radhika Khetani. (2022, 
January 6). hbctraining/scRNA-seq_online: 
scRNA-seq Lessons from HCBC (first release). 
Zenodo. 
https://doi.org/10.5281/zenodo.5826256. 12

CreateSeuratObject()
NormalizeData()
FindVariableFeatures()
ScaleData()
RunPCA()
FindNeighbors()
FindClusters()
RunUMAP()



Guidelines for removing low quality cells

• Low quality cells or empty droplets will 
have fewer genes and fewer counts

• Cell doublets (>1 cell assigned to a 
single barcode) will have significantly 
more genes and counts

• Dying cells will have higher 
mitochondrial contamination 

• (<=5% or 10% is a good guideline)

• We can use violin plots to determine 
thresholds for filtering based on these 
metrics
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Example Before and After QC Plots 
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Consider Metrics Together: Gene and UMI 
Association Plots

• X axis = number of transcripts/counts per 
cell

• Y axis = number of unique genes per cell

• Generally, for good quality data, we expect a 
strong positive correlation between the 
number of counts and unique genes.

• Using the line as a guide, we can figure out 
cells that are potentially lower quality

• Cells in the bottom right quadrant 
indicates you’ve captured a few 
number of genes that are being 
sequenced over and over again

• Cells in the top left quadrant indicates 
you’re capturing many genes but not 
sequenced deep enough
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Example Association Plots Before and After Filtering
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Good resource for further reading

https://pmc.ncbi.nlm.nih.gov/articles/PMC6582955/
Luecken and Theis (2019)
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Training Material
Section 1 – Steps 1 and 2
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Normalise and Scale Data

Integration – What, When, Why?

Mary Piper, Meeta Mistry, Jihe Liu, William 
Gammerdinger, & Radhika Khetani. (2022, 
January 6). hbctraining/scRNA-seq_online: 
scRNA-seq Lessons from HCBC (first release). 
Zenodo. 
https://doi.org/10.5281/zenodo.5826256. 19



Integration – What, When, Why?

When comparing 2 Experimental Groups (e.g., Treatment/Control, 
KO/WT), we want to:
1. Identify shared cell subpopulations across both datasets.
2. Obtain conserved cell-type markers in both control and stimulated 

cells.
3. Compare datasets to reveal cell-type specific responses to 

treatment/condition.

These steps rely on integration—a process that aligns shared cell states 
across datasets, enhancing statistical power and enabling these 
comparative analyses across multiple scRNA-seq datasets.
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Unsupervised Clustering Without Integration

Clusters are defined by both cell-types and experimental group, complicating downstream analyses21



With integration – we can group cells by their shared biology, making 
cell type annotation and DE analysis easier
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Integration Summary

• Goal: To align same cell types across conditions.

• Challenge: Aligning cells of similar cell types so that we do not 
have clustering downstream due to differences between samples, 
conditions, or batches

• Recommendation: Go through the analysis without integration 
first to determine whether integration is necessary! 

(we’ll talk a bit more about this later)
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Training Material 
Section 1 – Steps 3 to 5

24



Integration Caveats – Decide 
first whether its needed

• Integration can sometimes remove 
biologically relevant signals to artificially 
force cells to align.

• However, it's not always needed and can be 
avoided with thoughtful experimental 
design.

Example:

• The UMAP on the right shows two organoid 
samples at the same differentiation stage, 
processed and sequenced together.

• In this case, integration would likely result in 
the loss of meaningful data, with little to no 
benefit. (Unpublished data)
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How can we determine whether the integration method (shown on the right) 
has failed due to genuine cell-type differences between the two datasets?

Discussion
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How do you decide on the integration tool to use? 

• The optimal integration method 

depends on the complexity of the 

integration task and dataset you 

are working with

• Luecken et al. found that Harmony 

is good for simple integration 

tasks 

• For more complex data scenarios 

other integration methods may be 

better such as Seurat CCA
27



Break
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Differential Expression Analyses in Seurat

Normalise and Scale Data

Mary Piper, Meeta Mistry, Jihe Liu, William 
Gammerdinger, & Radhika Khetani. (2022, 
January 6). hbctraining/scRNA-seq_online: 
scRNA-seq Lessons from HCBC (first release). 
Zenodo. 
https://doi.org/10.5281/zenodo.5826256. 29



In-built Seurat Functions for DE Analysis
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Training Material 
Section 2 – Steps 1 to 6



Pseudobulk Analyses – An alternative DE approach

• Combines single-cell counts 
and metadata into 'bulk' count 
matrices at the sample or 
replicate level.

Advantages:
• Uses well-established bulk 

RNA-seq tools (DESeq2, edgeR, 
limma).

• Enhances statistical robustness 
by averaging out single-cell 
variability and reducing sparsity.

• Facilitates straightforward DE 
analysis with familiar methods.

https://www.nature.com/articles/s41467-021-25960-2
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Why use a pseudobulk approach?
• scRNA-seq data is notoriously sparse, with a complicated distribution 

and heterogeneity across and within cell populations.

• Single-cell DE methods often struggle to identify low-expression DEGs 

and overemphasize highly expressed genes.

• Inflates p-values by treating individual cells as separate samples, 

reducing statistical reliability.

• Pseudobulk analysis aggregates cells by sample, preserving cell-type 

resolution while allowing for statistical testing using bulk RNA-seq 

tools

• This leads to more accurate and robust differential expression findings.
33
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Training Material 
Section 3 – Steps 1 to 5



Discussion: Compare single-cell versus pseudo-bulk DE approaches

DEGs found by Seurat single-cell method DEGs found by DESeq2 pseudo-bulk method

These heatmaps display the expression of differentially expressed genes (DEGs) along the y-axis, with cells 
grouped by patient replicates on the x-axis. Can you spot the differences?
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Walk Through: Extracting DEG data from Seurat to make custom 
visualisations with other packages (pheatmap)
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Training Material 
Section 3 – Step 6



What comes next?
1. Gene Ontology (GO) Enrichment Analysis

• Perform GO enrichment analysis to identify biological processes, molecular functions, or cellular components 

that are significantly enriched in your DEG list. 

• Tools like clusterProfiler in R can help you analyse and visualize these functional categories.

2. Pathway Analysis

• Use tools such as KEGG and Reactome to map your DEGs onto known biological pathways. This helps in 

understanding the broader biological context of gene expression changes.

• GSEA (Gene Set Enrichment Analysis) can also be used to assess whether specific gene sets (e.g., pathways) 

are significantly enriched in your data.

3. Validation with External Datasets

• Compare your DEGs with external datasets  or publicly available single-cell RNA-seq datasets to validate your 

findings or explore how they relate to known disease states, tissues, or conditions.
38



Please complete our survey before you 

leave today.
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