

Variant calling using GATK4

Anticipated workshop duration when delivered to a group of participants is 4 hours.

For queries relating to this workshop, contact Melbourne Bioinformatics (bioinformatics-training@unimelb.edu.au).

Author Information

Khalid Mahmood
Melbourne Bioinformatics, University of Melbourne
Developed: July 2021
Reviewed: September 2021

Overview

Topic

Skill level

This workshop is designed for participants with some command-line knowledge. You will need to be able to ssh into a remote machine, navigate the directory structure and scp �les from a remote
computer to your local computer.

Learning Objectives
At the end of this workshop, you will be able to:

Take raw DNA sequencing reads and perform variant calling to produce a variant list using GATK4.

Perform basic exploration of variants.

Description

This tutorial runs through the GATK4 best practices work�ow for variant calling. The work�ow starts with pairs of sequencing reads and performs a series of steps to determine a set of genetic
variants.

Data: Illumina HiSeq paired-end (2×100 bp) reads in FASTQ format.
Tools: GATK4, Picard, Bcftools and jigv
Reference data: GATK4 hg38 reference bundle and hg38 refGene annotation (hg38.refGene.gtf.gz)

Slides and workshop instructions
Click here for the slides.
Click here for a printer friendly PDF version of this workshop.

Requirements and preparation

Attendees are required to use their own laptop computers.

At least one week before the workshop, if required, participants should install the software below. This should provide su�cient time for participants to liaise with their own IT support should they encounter
any IT problems.

Software

Mac Users: No additional software needs to be installed for this workshop.

Windows Users:
1. A terminal emulator such as PuTTY(free and open-source) will need to be downloaded.
2. Software for �le transfers between a local computer and remote server such as WinSCP or FileZilla.

Data

All required data will be made available on the workshop virtual machines (hosted at the Melbourne Research Cloud). Login details will be provided closer to the tutorial data.

Mode of Delivery

Genomics

Transcriptomics

Proteomics

Metabolomics

Statistics and visualisation

Structural Modelling

Basic skills

Beginner

Intermediate

Advanced

Important

mailto:bioinformatics-training@unimelb.edu.au
http://127.0.0.1:8000/tutorials/variant_calling_gatk1/files/VariantCallingUsingGATK4.pdf
http://127.0.0.1:8000/tutorials/variant_calling_gatk1/files/variant_calling_gatk1.pdf
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://winscp.net/eng/index.php
https://filezilla-project.org/

This workshop will be run on a Nectar Instance. An “Instance” is Nectar terminology for a virtual machine running on the Nectar Cloud OpenStack infrastructure. An “Instance” runs on a “compute
node”; i.e. a physical computer populated with processor chips, memory chips and so on.

You will be given an individual username, IP address and password to log on to using the SSH client tool on your computer (Terminal on Mac or PuTTY on Windows).

Byobu-screen

Some of the commands in this tutorial take a while to run. Should your ssh connection drop and the SSH session on Nectar terminates, any commands that are running will terminate too. To mitigate
this, once logged on to the Nectar Instance, we’ll run byobu-screen (an enhancement for the screen terminal multiplexer) which allows us to resume a session. In other words, processes running in
byobu-screen will continue to run when their window is not visible, even if you get disconnected.

On Nectar, to start a byobu-screen session called workshop , type

You can then proceed to run the commands in the workshop as normal.

The screen should look like

Should your SSH session on Nectar terminate, once you log back in to your Nectar instance, list running sessions/screens:

If it says (Detached) next to the workshop session in the list, reattach to workshop by:

If it says (Attached) next to the workshop session in the list, you can access the workshop session which is already attached by:

Some other useful byobu-screen commands:

To detach from workshop , type ctrl-a ctrl-d while inside the workshop session. (You will need to con�gure Byobu’s ctrl-a behaviour if it hasn’t already been con�gured (text will appear on the
screen telling you this). Follow the information on the screen and select 1 for Screen mode).

To terminate workshop , type ctrl-d while inside the workshop session.

Tutorial setting

The setting for this tutorial is as follows: you receive some germline sequencing data from an individual NA12878 (chr20 from sample NA12878 is sourced from the International Genome Sample
Resource). Your aim is to identify small genetic variants from this data.

The Genome Analysis Toolkit (GATK)

GATK is the industry standard toolkit for analysis of germline DNA to identify SNVs and indels. The GATK tool is mainly designed fo the human whole genome and exome analysis. The current
version (GATK4) has expanded scope now and includes more complex analysis such copy number (CNV), structural variant (SV) and somatic variants. The current version of GATK also includes
several utility functions for processing alignment �les, VCF �les and other complex processing work�ows. The Picard toolkit is also now incorporated with GATK4. Van der Auwera GA & O’Connor
BD. (2020). Genomics in the Cloud: Using Docker, GATK, and WDL in Terra (1st Edition). O’Reilly Media.

How this tutorial works

ssh username@ip-address

byobu-screen -S workshop

Help: Byobu basics

byobu-screen -ls

byobu-screen -r workshop

byobu-screen -r -d workshop

These grey coloured boxes are code blocks. The rectangular boxes in the top
right hand corner of this code block/grey box can be used to copy the code to
the clipboard.

https://cloud.nectar.org.au/
https://www.internationalgenome.org/data-portal/sample/NA12878

REVEALED! Coloured boxes like these when clicked will reveal their content.

To copy data from the remote workshop computer to your local computer.

Command line/Mac Users

The syntax to do this depends on whether you are running the copying command on your local computer, or on the remote computer (Nectar cloud).

1. When running the command from your local computer, the syntax for copying a �le from Nectar is:

2. Running the command on the remote computer, the syntax for copying a �le to your local computer is:

SFTP clients

Using WinSCP or FileZilla or CyberDuck you will need the following details to connect and browse.

1. Host: The IP address of the Nectar instance

2. Username:

3. Port:

Tutorial contents table

Section 1: Map raw mapped reads to reference genome

Section 2: Prepare analysis ready reads

Section 3: Variant calling

Section 4: Filter and prepare analysis ready variants

Section 5: Exporting variant data and visualisation

Section 1: Map raw mapped reads to reference genome

1. Preparation and data import

Let’s start by setting up the directory structure for this analysis. The data directory is where the raw sequencing reads will be. All output �les will be directed to the output directory. All reference
�les will be pointed to the reference directory. The command-line scripts are stored in simple bash script format in the scripts directory. For those interested, equivalent slurm scripts to run on
Spartan are available in the slurm_scripts directory. Although all tools are installed on the server, we will create a tools directory.

Let’s begin by creating a byobu-screen session (see above sections for more help):

Create workshop directories:

All analysis is being carried out in the home directory (the directory you log in to).

The data for this tutorial is sourced from the International Genome Sample Resources. Raw sequencing reads from chromosome 20 are used in this tutorial. We have prepared the �les which can be
copied as follows:

To perform quality control checks on the raw fastq data, use the tool FastQC. Another useful QC tool output aggregator is the MultiQC tool. MultiQC aggregates the output from several tools and outputs a
single QC report for all samples. We will have a look at some of the QC data later in this section.

Next, we need to prepare the reference data. Luckily, we have downloaded the data and all we need to do is to create a symbolic link to the data folder as follows:

There are several �les in the reference directory. These included the GATK bundle of reference �les downloaded from (ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/hg38/). Additional
�les include in the directory are the BWA index �les generated for the reference genome.

2. Align genome

Run the command below to map the raw sequencing data to the Homo sapiens (human) genome assembly GRCh38 (hg38). We are using the BWA-MEM algorithms for mapping DNA sequences
against large reference genomes. Note that we have already run the created the BWA index �les by running the command bwa index reference/hg38/Homo_sapiens_assembly38.fasta .

Run BWA as follows, but �rst navigate to the scripts folder:

There are two parts to the command here. The �rst part uses BWA to perform the alignment and the second part takes the output from BWA and uses Samtools to convert the output to the BAM
format.

Click here

scp username@nectar_IP_address:FILENAME /PATH/TO/TARGET/FOLDER/

scp FILENAME username@your_IP_address:/PATH/TO/TARGET/FOLDER/

cd
byobu-screen -S workshop

mkdir data
mkdir output
mkdir reference
mkdir reference/hg38
mkdir scripts
mkdir slurm_scripts
mkdir temp
mkdir tools

Note

cp -p /mnt/shared_data/NA12878.chr20.region_1.fastq.gz data/.
cp -p /mnt/shared_data/NA12878.chr20.region_2.fastq.gz data/.

Note

ln -s /mnt/shared_data/* reference/hg38/.

bwa mem -M -t 2 \
-R "@RG\tID:SRR622461.7\tSM:NA12878\tLB:ERR194147\tPL:ILLUMINA" \
reference/hg38/Homo_sapiens_assembly38.fasta \
data/NA12878.chr20.region_1.fastq.gz \
data/NA12878.chr20.region_2.fastq.gz | \
samtools view -b -h -o output/NA12878.bam -

https://www.internationalgenome.org/data-portal/sample/NA12878
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://multiqc.info/
https://kb.iu.edu/d/abbe
ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/hg38/
https://github.com/lh3/bwa

At the end of this step you should have a �le called NA12878.bam in the output directory.

Section 2: Prepare analysis ready reads

1. Sort SAM/BAM

The alignment �le NA12878.bam is not sorted. Before proceeding, we should sort the BAM �le using the Picard tools.

The above command will create a coordinate sorted BAM �le and an index (.bai) �le.

Given we now have a sorted BAM �le, we can now generate some useful statistics. To do so we can use the samtools flagstat command. More details are available here. To decode the SAM �ags visit
Decoding SAM �ags website.

2. Mark duplicate reads

The aim of this step is to locate and tag duplicate reads in the BAM �le. Duplicate reads can arise due to several reasons. For more details go to MarkDuplicates.

Looks like there are 7207 duplicate reads.

3. Base quality recalibration

The last step of pre-processing mapped reads is the base quality score recalibration (BQSR) stage. The GATK tools detects systematic errors made by the sequencing machine while estimating the
accuracy of each base. The systematic errors can have various sources ranging from technical machine errors to the variability in the sequencing chemical reactions. The two step BQSR process
applies machine learning to model the possible errors and adjust the base quality scores accordingly. More details here.

picard -Xmx7g SortSam \
I=output/NA12878.bam \
O=output/NA12878.sort.bam \
VALIDATION_STRINGENCY=LENIENT \
SORT_ORDER=coordinate \
MAX_RECORDS_IN_RAM=3000000 \
CREATE_INDEX=True

Alignment

let's go to the home directory
cd

samtools flagstat output/NA12878.sort.bam

output

2032568 + 0 in total (QC-passed reads + QC-failed reads)
2030516 + 0 primary
2052 + 0 secondary
0 + 0 supplementary
0 + 0 duplicates
0 + 0 primary duplicates
2032563 + 0 mapped (100.00% : N/A)
2030511 + 0 primary mapped (100.00% : N/A)
2030516 + 0 paired in sequencing
1015258 + 0 read1
1015258 + 0 read2
2030284 + 0 properly paired (99.99% : N/A)
2030510 + 0 with itself and mate mapped
1 + 0 singletons (0.00% : N/A)
182 + 0 with mate mapped to a different chr
124 + 0 with mate mapped to a different chr (mapQ>=5)

picard -Xmx7g MarkDuplicates \
 I=output/NA12878.sort.bam \
 O=output/NA12878.sort.dup.bam \
 METRICS_FILE=output/marked_dup_metrics.txt

Question: How many duplicate reads are in the duplicate marked BAM �le?

Answer

samtools flagstat output/NA12878.sort.dup.bam

2032568 + 0 in total (QC-passed reads + QC-failed reads)
2030516 + 0 primary
2052 + 0 secondary
0 + 0 supplementary
7207 + 0 duplicates
7207 + 0 primary duplicates
2032563 + 0 mapped (100.00% : N/A)
2030511 + 0 primary mapped (100.00% : N/A)
2030516 + 0 paired in sequencing
1015258 + 0 read1
1015258 + 0 read2
2030298 + 0 properly paired (99.99% : N/A)
2030510 + 0 with itself and mate mapped
1 + 0 singletons (0.00% : N/A)
182 + 0 with mate mapped to a different chr
124 + 0 with mate mapped to a different chr (mapQ>=5)

let's go to the home directory again
cd

step 1 - Build the model
gatk --java-options "-Xmx7g" BaseRecalibrator \
 -I output/NA12878.sort.dup.bam \
 -R reference/hg38/Homo_sapiens_assembly38.fasta \
 --known-sites reference/hg38/dbsnp_146.hg38.vcf.gz \
 -O output/recal_data.table

step 2: Apply the model to adjust the base quality scores
gatk --java-options "-Xmx7g" ApplyBQSR \
 -I output/NA12878.sort.dup.bam \
 -R reference/hg38/Homo_sapiens_assembly38.fasta \
 --bqsr-recal-file output/recal_data.table \
 -O output/NA12878.sort.dup.bqsr.bam

https://broadinstitute.github.io/picard/
http://www.htslib.org/doc/samtools-flagstat.html
https://broadinstitute.github.io/picard/explain-flags.html
https://gatk.broadinstitute.org/hc/en-us/articles/360037052812-MarkDuplicates-Picard-
https://gatk.broadinstitute.org/hc/en-us/articles/360035890531-Base-Quality-Score-Recalibration-BQSR-

In a work�ow such as this, it is a good practice to give the output �les an appropriate name. In this case, we are appending the work�ow step details to the �lenames. For example, append dup after
running the mark duplicates step.

We now have a pre-processed BAM �le (NA12878.sort.dup.bqsr.bam) ready for variant calling.

But before we proceed, let’s take a detour and run some summary statistics of the alignment data and QC.

The commands below use FastQC and Picard to generate QC metrics, followed by multiQC to aggregate the data, producing an HTML report.

We have precomputed this and the resulting MultiQC report is here.

Section 3: Variant calling
The next step in the GATK best practices work�ow is to proceed with the variant calling.

There are a couple of work�ows to call variants using GATK4. Here we will follow the Genomic Variant Call Format (GVCF) work�ow which is more suited for scalable variant calling i.e. allows
incremental addition of samples for joint genotyping.

1. Apply HaplotypeCaller

HaplotypeCaller is the focal tool within GATK4 to simultaneously call germline SNVs and small Indels using local de novo assembly of haplotype regions.

Brie�y, the HaplotypeCaller works by: 1. Identify active regions or regions with evidence of variations. 2. Re-asssemble the active regions. 3. Re-align active region reads to the assembled regions to identify
allele. More details about the HaplotypeCaller can be found here.

The output of this step is a GVCF �le. The format for the GVCF �le is similar to a VCF �le. The key difference is that the GVCF �le contains records for each sequenced genomic coordinate. The --
emit-ref-confidence or -ERC parameter lets you select a method to summarise con�dence in the genomic site being homozygous-reference. The option -ERC GVCF is more e�cient and
recommended for large samples and therefore more scalable.

2. Apply CombineGVCFs

The CombineGVCFs tool is applied to combine multiple single sample GVCF �les, merging them into a single multi-sample GVCF �le.

We have pre-processed two additional samples (NA12891 and NA12892) up to the HaplotypeCaller step (above). Let’s �rst copy the GVCF �les to the output directory.

Work your way down to the variant records? How many samples do you see in the VCF �le? Hint: look at the header row.

Now that we have a merged GVCF �le, we are ready to perform genotyping.

3. Apply GenotypeGVCFs

GATK uses a modi�ed version (to include multi-allelic variants) to calculate the posterior probability of a non-reference allele. More details here.

An alternative to CombineGVCFs is GenomicsDBImport, which is more e�cient for large sample numbers and stores the content in a GenomicsDB data store. Therefore, CombineGVCFs could be slow and
ine�cient for more than a few samples. A possible work around is to split up the tasks into per interval regions such as chromosomes.

Note

BAM statistics and QC

FastQC
fastqc data/NA12878.chr20.region_1.fastq.gz \
data/NA12878.chr20.region_2.fastq.gz \
-o output/

CollectInsertSizeMetrics
picard CollectMultipleMetrics \
R=reference/hg38/Homo_sapiens_assembly38.fasta \
I=output/NA12878.sort.dup.bqsr.bam \
O=output/NA12878.sort.dup.bqsr.CollectMultipleMetrics

MultiQC
multiqc output/. -o output/.

Algorithm

gatk --java-options "-Xmx7g" HaplotypeCaller \
 -I output/NA12878.sort.dup.bqsr.bam \
 -R reference/hg38/Homo_sapiens_assembly38.fasta \
 -ERC GVCF \
 -L chr20 \
 -O output/NA12878.g.vcf.gz

#let's make sure that we are in the apropriate directory
cd

cp /mnt/shared_data/NA12891.g.vcf.gz* output/.
cp /mnt/shared_data/NA12892.g.vcf.gz* output/.

gatk --java-options "-Xmx7g" CombineGVCFs \
 -R reference/hg38/Homo_sapiens_assembly38.fasta \
 -V output/NA12878.g.vcf.gz \
 -V output/NA12891.g.vcf.gz \
 -V output/NA12892.g.vcf.gz \
 -L chr20 \
 -O output/cohort.g.vcf.gz

Let’s look at the combined GVCF �le

less output/cohort.g.vcf.gz

gatk --java-options "-Xmx7g" GenotypeGVCFs \
 -R reference/hg38/Homo_sapiens_assembly38.fasta \
 -V output/cohort.g.vcf.gz \
 -L chr20 \
 -O output/output.vcf.gz

Information

http://127.0.0.1:8000/tutorials/variant_calling_gatk1/files/multiqc_report.html
https://gatk.broadinstitute.org/hc/en-us/articles/360037225632-HaplotypeCaller
https://gatk.broadinstitute.org/hc/en-us/articles/360035890511-Assigning-per-sample-genotypes-HaplotypeCaller-
https://gatk.broadinstitute.org/hc/en-us/articles/360057439331-GenomicsDBImport

Screenshot from output.vcf.gz

Section 4: Filter and prepare analysis ready variants

1. Variant Quality Score Recalibration

The raw VCF �le from the previous step (output.vcf.gz) contains 10467 variants. Not all of these are real, therefore, the aim of this step is to �lter out artifacts or false positive variants. GATK has
provided different work�ows for variant �ltering. Here we will walk through the Variant Quality Score Recalibration or the VQSR strategy. VQSR is a two step process (1) the �rst step builds a model
that describes how variant metric or quality measures co-vary with the known variants in the training set. (2) The second step then ranks each variant according to the target sensitivity cutoff and
applies a �lter expression.

There are number of ways to count the variants in a VCF �le. A very straight forward way using the GATK4 tools is as follows:

There are several protocols for �ltering VCF �les. We have walked through just one of them. For other options please visit this link.

Visualisations: VCF �le

#Step 1 - VariantRecalibrator
gatk --java-options "-Xmx7g" VariantRecalibrator \
 -V output/output.vcf.gz \
 --trust-all-polymorphic \
 -mode SNP \
 --max-gaussians 6 \
 --resource:hapmap,known=false,training=true,truth=true,prior=15 reference/hg38/hapmap_3.3.hg38.vcf.gz \
 --resource:omni,known=false,training=true,truth=true,prior=12 reference/hg38/1000G_omni2.5.hg38.vcf.gz \
 --resource:1000G,known=false,training=true,truth=false,prior=10 reference/hg38/1000G_phase1.snps.high_confidence.hg38.vcf.gz \
 --resource:dbsnp,known=true,training=false,truth=false,prior=7 reference/hg38/dbsnp_138.hg38.vcf.gz \
 -an QD -an MQRankSum -an ReadPosRankSum -an FS -an MQ -an SOR -an DP \
 -O output/cohort_snps.recal \
 --tranches-file output/cohort_snps.tranches

#Step 2 - ApplyVQSR
gatk --java-options "-Xmx7g" ApplyVQSR \
 -R reference/hg38/Homo_sapiens_assembly38.fasta \
 -V output/output.vcf.gz \
 -O output/output.vqsr.vcf \
 --truth-sensitivity-filter-level 99.0 \
 --tranches-file output/cohort_snps.tranches \
 --recal-file output/cohort_snps.recal \
 -mode SNP

Countvariants

gatk CountVariants -V output/output.vqsr.vcf

Tool returned:
10467

https://gatk.broadinstitute.org/hc/en-us/articles/360035531112--How-to-Filter-variants-either-with-VQSR-or-by-hard-filtering

Consider the following method to �lter a single sample VCF �le. Here we will go through the Convolutional Neural Net based protocol to annotate and �lter the VCF �le.

This is a two step process:

(i) CNNScoreVariants will annotate the variant with pre-computed single-sample derived model scores in the INFO �eld CNN_1D (the neural network performs convolutions over the reference sequence
surrounding the variant and combines those features with a multilayer perceptron on the variant annotations).

(ii) FilterVariantTranches takes as input the percent sensitivities (0-100) to known sites to apply the �lter. Variants with scores higher than for e.g. 99th percentile of variants in the resources pass through
the �lter and will have PASS in the �lter. Others will have a �lter values like ‘CNN_1D_INDEL_Tranche_99.40_100.00’ or ‘CNN_1D_SNP_Tranche_99.95_100.00’.

BCFtools is a useful tool to manipulate, �lter and query VCF �les. More details from BCFtools. BCFtools can be combined with linux command line tools as well to summarise data. For example, the
command below can used extract and print the ‘FILTER’ column from the VCF �le.

2. Additional �ltering

The VariantFiltration tools is designed for hard-�ltering variant calls based on custom quality criteria such as sequencing depth, mapping quality etc. The two parameters are the �lter-name and
�lter-expression. The parameter �lter-name is the name of the �lter to be used in the FILTER column if the expression in �lter-expression is true. In the example below, if the sequencing depth at the
variant site (VCF �eld DP) is less than 10, the FILTER �eld will be populated with the value ‘Low_depth10’. Users can add multiple �lter expression/name combinations.

3. Final analysis ready VCF �le

Given we have a �lter annotated VCF �les (), we can now create an analysis ready VCF �le.

Use the bcftools to �lter PASS variants.

We have now created an analysis ready version of the VCF �le. It is also a good practice to compress and index the �le.

Section 5: Exporting variant data and visualisation
VCF �les, although in tabular format, are not user friendly. We will go through a couple of ways to share share and visualise variant data. This is important for downstream analysis as well as sharing
data. First, we will convert the VCF �le in to a TSV �le (ready for Excel for example) in a manner where we extract data �elds of interest.

1. VariantsToTable

This GATK4 tool extracts �elds of interest from each record in a VCF �le. VariantsToTable can extract �eld from both the INFO and FORMAT columns in the VCF �le.

VariantsToTable, by default, only extracts PASS or . (no �ltering applied) variants. Use the --show-filtered parameter to show all variants.

Filtering strategy for a single sample VCF �le

gatk --java-options "-Xmx7g" CNNScoreVariants \
 -R reference/hg38/Homo_sapiens_assembly38.fasta \
 -V output/output.vcf.gz \
 -O output/output.cnns.vcf

gatk --java-options "-Xmx7g" FilterVariantTranches \
 -V output/output.cnns.vcf \
 --resource reference/hg38/hapmap_3.3.hg38.vcf.gz \
 --resource reference/hg38/Mills_and_1000G_gold_standard.indels.hg38.vcf.gz \
 --info-key CNN_1D \
 --snp-tranche 99.95 \
 --indel-tranche 99.4 \
 -O output/output.cnns.cnnfilter.vcf

Hint

bcftools query -f'%FILTER\n' output/output.vqsr.vcf

gatk --java-options "-Xmx7g" VariantFiltration \
 -R reference/hg38/Homo_sapiens_assembly38.fasta \
 -V output/output.vqsr.vcf \
 -O output/output.vqsr.varfilter.vcf \
 --filter-name "Low_depth10" \
 --filter-expression "DP < 10"

Question: How many variants have a low sequencing depth (DP<10) in the �le output.vqsr.var�lter.vcf.

Answer

bcftools query -f'%FILTER\n' output/output.vqsr.varfilter.vcf | sort | uniq -c

 6 Low_depth10
 2 Low_depth10;VQSRTrancheSNP99.00to99.90
 9 Low_depth10;VQSRTrancheSNP99.90to100.00
 9064 PASS
 1278 VQSRTrancheSNP99.00to99.90
 108 VQSRTrancheSNP99.90to100.00

Question: Create a VCF �le called output/output.vqsr.varfilter.pass.vcf.gz that contains only PASS variants? The input VCF �le is output/output.vqsr.varfilter.vcf .” Hint: try using the
Bcftools application.

Answer

bcftools view -f 'PASS,.' -O vcf -o output/output.vqsr.varfilter.pass.vcf output/output.vqsr.varfilter.vcf

bgzip -c output/output.vqsr.varfilter.pass.vcf > output/output.vqsr.varfilter.pass.vcf.gz
tabix -p vcf output/output.vqsr.varfilter.pass.vcf.gz

Note

gatk VariantsToTable \
 -R reference/hg38/Homo_sapiens_assembly38.fasta \
 -V output/output.vqsr.varfilter.pass.vcf.gz \
 -F CHROM -F POS -F FILTER -F TYPE -GF AD -GF DP \
 --show-filtered \
 -O output/output.vqsr.varfilter.pass.tsv

https://samtools.github.io/bcftools/
https://gatk.broadinstitute.org/hc/en-us/articles/360056968292-VariantsToTable

2. HTML report

Another useful method for sharing data is an interactive HTML �le. This is suited for sharing a smaller subset of variants along with sequencing data. Here we will go through a simple example using
the jigv tool.

We will start with creating a subset of variants to report.

Now, we will call the jigv tool command to generate the report.

Here is an example report we created earlier.

bcftools view output/output.vqsr.varfilter.pass.vcf.gz \
chr20:3822018-3999324 | \
bgzip -c > output/subset.vcf.gz

tabix -p vcf output/subset.vcf.gz

jigv --sample NA12878 \
--sites output/subset.vcf.gz \
--fasta reference/hg38/Homo_sapiens_assembly38.fasta \
output/NA12878.sort.dup.bqsr.bam > output/NA12878.jigv.html

https://github.com/brentp/jigv
http://127.0.0.1:8000/tutorials/variant_calling_gatk1/files/NA12878.html

